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In periodic lattice structures, wave propagation on the infinite domain can be greatly

simplified by invoking the Floquet–Bloch theorem. The theorem allows a system’s

degrees of freedom to be reduced to a small subset contained in a repeating unit cell.

The equations of motion governing this subset contain internal force terms, which must

ships. There are subtle issues with regard to the elimination of these forces, which we

address in this paper. We demonstrate that for any two- or three-dimensional periodic

lattice, the internal forces vanish when acted upon by the linear transformation

engendered by the degree of freedom reduction.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice structures are widely used in applications where engineers require low weight and high stiffness [1]. In addition,
periodic structures can have advantageous acoustic wave propagation characteristics. Mead provides an early use [2] and
review [3] of Bloch analysis for investigating harmonic wave propagation in periodic systems. More recently, Phani et al. [4]
derived the acoustic band structure of example honeycomb structures using finite element techniques and Bloch analysis.
In these works and others, researchers use the fact that the equations of motion can be reduced to the minimum number of
degrees of freedom (e.g., displacements) using Bloch analysis. While this is true for the displacements, it is not necessarily
true for the forces accompanying the displacements. In his seminal work, Langley [5] properly poses the Bloch treatment of
the unit cell forces for the case of a rectangular lattice. He shows that the Bloch procedure results in a zero vector for the
final, reduced forces. Others (for e.g., Ref. [4]), cite Langley for use in their general geometry analysis, although Langley’s
treatment is valid for the rectangular case only. Still others incorrectly invoke the Bloch conditions on corner forces,
however, without detriment to their analysis and results.

Here, we demonstrate that for any two- or three-dimensional lattice, the Bloch procedure results in a zero vector for the
reduced forces acting on the unit cell. Consequently, the forces are no longer of concern.

2. Bloch analysis

Any lattice structure in a three-dimensional space can be constructed by translating a repeating unit cell along three
independent basis vectors e1, e2, e3 [6]. If RðrjÞ denotes the displacement of a point located at rj in a chosen reference unit
cell, then

RðrjÞ ¼ Rje
ðiot�k�rjÞ, (1)
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in which Rj is the amplitude, o is the frequency and k is the wave vector of the plane wave. The integer triplet ðn1;n2;n3Þ

identifies the cell obtained by n1, n2 and n3 translates of the unit cell along the e1, e2 and e3 direction, respectively, such
that the point in the cell ðn1;n2;n3Þ corresponding to rj is located at r

n1;n2;n3
j

¼ rj þ n1e1 þ n2e2 þ n3e3. Letting
mx ¼ �k � e1, my ¼ �k � e2 and mz ¼ �k � e3, the displacement at r

n1;n2;n3
j

takes the form

Rðr
n1;n2;n3
j

Þ ¼ RðrjÞe
�k:ðn1e1þn2e2þn3e3Þ ¼ RðrjÞe

n1mxþn2myþn3mz . (2)

Thus for two cells adjacent along the e1-axis, Rðr
n1;n2;n3
j

Þ ¼ Rðr
n1�1;n2;n3
j

Þemx . We use this property and the like of that along
the e2- and e3-axis to reduce the number of coordinates. In what follows, e1, e2 and e3 will be identified with x-, y- and z-
axes, which are not assumed to be orthogonal.

3. Equations of motion

After invoking Lagrangian or Newtonian dynamics, the equations of motion for a general unit cell assume the form

M €qþ Kq ¼ F, (3)

in which matrices M and K represents the global mass and stiffness matrix of the unit cell, q and €q represents the (nodal)
displacements and accelerations, and F denotes the (nodal) forces. For plane harmonic waves, €q can be replaced by �o2q
so that the equations of motion can be rewritten as

ð�o2Mþ KÞq ¼ F. (4)

For plane waves in a periodic lattice, the Bloch analysis reduces the number of displacements in Eq. (4), i.e., we can write

q ¼ Tbq. (5)

In a planar lattice structure, T is a linear transformation parametrized by mx and my. For example, in the case of a square
honeycomb (Fig. 1), if qsq denotes the displacements of the unit cell, we have qsq ¼ Tsqbqsq in which

qsq ¼

qi

qB

qT

qL

qR

qLB

qRB

qLT

qRT

266666666666666664

377777777777777775
; Tsq ¼

I 0 0 0

0 I 0 0

0 Iemy 0 0

0 0 I 0

0 0 Iemx 0

0 0 0 I

0 0 0 Iemx

0 0 0 Iemy

0 0 0 Iemxþmy

266666666666666664

377777777777777775
; bqsq ¼

qi

qB

qL

qLB

266664
377775. (6)

Note that qRB ¼ emx qLB holds because qRB is the common point for two adjacent cells: the cells located at n1e1 þ n2e2 and
ðn1 þ 1Þe1 þ n2e2 (see Fig. 2), i.e., q

n1;n2
RB ¼ q

n1þ1;n2
LB : By the Floquet–Bloch theorem, q

n1þ1;n2
LB ¼ emx q

n1þ1;n2
LB . These two

equations and similar relations yield (6). In a general case (not square honeycomb), Eq. (5) would result in an equation of
motion in the form of ð�o2Mþ KÞTbq ¼ F. If the external force term on the right-hand side of this equation could be
eliminated, it would establish an eigenvalue problem yielding o. We show that a matrix T obtained from T by replacing mx,
my with�mx,�my will have the property that T

T
F ¼ 0, where T

T
denotes the transpose of T. For example, for the special case
qLT qRT
qT

qR

qRB

qL

qLB qB

qi

e1

e2

Fig. 1. Depiction of the nine displacements in a square honeycomb lattice.



ARTICLE IN PRESS

FT

e
μyFLB e

μyFFB e
μyFRB

eμXFLT

eμXFL

eμXFLB

eμx + μy FLB

FRTFLT

FL

   FLB FB FRB

FR

e1

e2

(n1 , n2+1)

(n1+1, n2)(n1 , n2)

 (n1+1, n2+1)

Fig. 2. Square honeycomb with e1, e2 as the coordinate unit vectors and the cells located at ðn1;n2Þ, ðn1 þ 1;n2Þ, ðn1;n2 þ 1Þ and ðn1 þ 1;n2 þ 1Þ.
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of the squarehoneycomb:

T
T
sqFsq ¼

0

FB þ e�my FT

FL þ e�mx FR

FLB þ e�mx FRB þ e�my FLT þ e�my�my FRT

266664
377775. (7)

Note that others apply the Bloch approach to the forces in Eq. (7), and combine it with the equilibrium condition for the
remaining terms in T

T
sqFsq, and arrive at the equations,

FT ¼ �emy FB; FR ¼ �emy FL, (8)

FRB ¼ �emx FLB; FLT ¼ �emy FLB; FRT ¼ emyþmy FLB, (9)

resulting in the desired outcome T
T
sqFsq ¼ 0. This procedure cannot be followed, however. Langley has shown that Eq. (9)

violates the power flow assumption through the square lattice structure. Here, we show by example that Eq. (9) does not
hold. However, we do show that T

T
F ¼ 0 holds in general for cases such as triangular honeycomb, hexagonal honeycomb

and general three-dimensional structures.
4. Force reduction

In this section it will be shown that T
T

F ¼ 0 holds for planar lattices. The three-dimensional case borrows similar
arguments expanded in the remaining direction. In any lattice structure a minimal set of displacements can be defined,
which we term qi and eq for the internal and the cell boundary displacements, respectively. Applying the Bloch theorem, the
remaining nodal displacements in the unit cell can be determined by pushing eq forward in a combination of the x or/and y

directions. We term these mappings Tx, Ty and Txy. Consequently, the relation between the minimum set of displacements
qi, eq and the totality of displacements q is stated as

q ¼ T
qieq
" #

, (10)

in which

T ¼

I 0

0 I

0 Tx

0 Ty

0 Txy

26666664

37777775, (11)
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such that q takes the form

q ¼

qieqeqxeqyeqxy

266666664

377777775. (12)

For example, in the two-dimensional square honeycomb (Fig. 1), if qsq denotes a rearrangement of the displacements qsq,
we have

qsq ¼

qsq
ieqsq

eqsq
xeqsq
yeqsq
xy

2666666664

3777777775
¼ Tsq

qsq
ieqsq

24 35 ¼
I 0

0 I

0 Tsq
x

0 Tsq
y

0 Tsq
xy

266666664

377777775
qsq

ieqsq

24 35, (13)

in which

qsq
i
¼ qi; eqsq

¼

qB

qL

qLB

264
375,

eqsq
x ¼

qR

qRB

" #
; eqsq

y ¼
qT

qLT

" #
; eqsq

xy ¼ ½qRT �, (14)

and

Tsq
x ¼

0 Iemx 0

0 0 Iemx

� �
; Tsq

y ¼
Iemy 0 0

0 0 Iemy

" #
; Tsq

xy ¼ ½0 0 Iemxþmy �. (15)

Implementing Bloch analysis, we can derive all the displacements of a cell from the minimal set of displacements ½qi eq�T.
The equation of motion at a cell located at ðn1;n2Þ in the general two-dimensional lattice structure takes the form

ð�o2Mþ KÞ

I 0

0 I

0 Tx

0 Ty

0 Txy

26666664

37777775
qieq
" #

¼

Fi

F
n1;n2eq

F
n1;n2eqx

F
n1;n2eqy

F
n1;n2eqxy

2666666666664

3777777777775
, (16)

where Fn1 ;n2eqy
denotes the force collocated with eqy and applied on the cell ðn1;n2Þ. Similarly, F

n1�1;n2eq denotes the forces on
cell ðn1 � 1;n2Þ collocated with eq, where eq always references cell ðn1;n2Þ herein. Note that since eq is a vector of boundary
displacements shared by two or more adjacent cells, the force nomenclature must also specify the translates n1;n2.

The translation matrices Tx, Ty and Txy have a special property: only one element in each row is nonzero because each

displacement q in eqx,eqy,eqxy is obtained by shifting one element in eq. Also, only one element in each column is nonzero

since each q shows up once in eqx, eqy and eqxy. We define negative translation matrices T�x, T�y and T�xy by replacing emx ,

emy , emxþmy with e�mx , e�my and e�mx�my . Due to the aforementioned properties of Tx, Ty, Txy it can be easily verified that

TvTT
�v ¼ I; v ¼ x; y; xy, (17)

where I denotes an identity matrix and TT
�v denotes the right inverse matrix of Tv. As such, if Tv represents a pushing

forward action in the v direction, then TT
�v is a pulling back action in the same v direction. Now, we consider TT

�vTv which is

a diagonal matrix with diagonal elements of zero or one. By virtue of the Bloch procedure, Tx,Ty and Txy map F
n1;n2eq into

F
n1þ1;n2eqx

, F
n1 ;n2þ1eqy

and F
n1þ1;n2þ1eqx

, respectively. The dimension of F
n1þ1;n2eqx

is less than or equal to the dimension of F
n1;n2eq . For

example in the case of the square honeycomb lattice depicted in Fig. 2

F
n1þ1;n2eqx

¼ Tsq
x F

n1;n2eq ¼
0 Iemx 0

0 0 Iemx

� � FB

FL

FLB

264
375 ¼ emx FL

emx FLB

" #
. (18)
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Note that TT
�xF

n1þ1;n2eqx
pulls back the elements of F

n1þ1;n2eqx
in the x direction. TT

�xF
n1þ1;n2eqx

has the same dimension as F
n1;n2eq ,

but it is not the same vector. TT
�x recovers those elements of F

n1;n2eq which were pushed forward by Tx. In other words,

[TT
�xF

n1þ1;n2eqx
] is the force on the cell ðn1;n2Þ collocated with eqn1�1;n2

x . For example in Fig. 2:

ðTsq
�xÞ

TF
n1þ1;n2eqx

¼ ðTsq
�xÞ

TTsq
x F

n1;n2eq ¼

0 0

Ie�mx 0

0 Ie�mx

264
375 emx FL

emx FLB

" #
¼

0

FL

FLB

264
375,

with the same argument, TT
�xyTxyF

n1;n2eq is the force on the cell ðn1;n2Þ collocated with eqn1�1;n2�1
xy . In the case of Fig. 3

ðTsq
�xÞ

TF
n1;n2eqx

¼ ðTsq
�xÞ

TTsq
x F

n1�1;n2eq ¼ ðTsq
�xÞ

TTsq
x

0

e�mx FR

e�mx FRB

264
375 ¼ 0

e�mx FR

e�mx FRB

264
375.

We ultimately wish to show that

T
T

F ¼
I 0 0 0 0

0 I TT
�x TT

�y TT
�xy

" #
Fi

F
n1;n2eq

F
n1;n2eqx

F
n1;n2eqy

F
n1;n2eqxy

2666666666664

3777777777775
¼ 0. (19)

Note that T
T

F consists of two vectors, Fi which is zero in the absence of external forces, and

F
n1;n2eq þ TT

�xF
n1;n2eqx

þ TT
�yF

n1 ;n2eqy
þ TT
�xyF

n1;n2eqxy
. (20)

Since F
n1;n2eqx

¼ TT
x F

n1�1;n2eq (and similar identities), we can restate Eq. (20) as

F
n1;n2eq þ TT

�xTxF
n1�1;n2eq þ TT

�yTyF
n1;n2�1eq þ TT

�xyTxyF
n1�1;n2�1eq . (21)

As was shown in Fig. 3, F
n1;n2eq , TT

�xTxF
n1�1;n2eq , TT

�yTyF
n1 ;n2�1eq and TT

�xyTxyF
n1�1;n2�1eq are the forces on the cells ðn1;n2Þ,

ðn1 � 1;n2Þ, ðn1;n2 � 1Þ and ðn1 � 1;n2 � 1Þ collocated with eq, eqn1�1;n2
x , eqn1;n2�1

y and eqn1�1;n2�1
xy , respectively. As it can be

seen for the example given in Fig. 4, the equilibrium condition in the region between adjacent cells collocated witheqn1;n2 (shaded region of Fig. 3) results in Eq. (20) evaluating to zero. Consequently, the equation of motion (4) would take
FT

e−μyFTe−μyFRT

e−μX FR

e−μX FRB

e−μx  −μy FRT

FRTFLT

FL

   FLB FB FRB

FR

e1

e2
(n1 , n2-1)

(n1 -1, n2) (n1 , n2)

 (n1-1, n2-1)

Fig. 3. Square honeycomb with the cells located at ðn1;n2Þ, ðn1 � 1;n2Þ, ðn1 ;n2 � 1Þ and ðn1 � 1;n2 � 1Þ. The equilibrium condition for the shaded area

results in Eq. (19).
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n1−1,n2T
~qT−x Tx  F

n1,n2 −1T
~qT−y Ty  Fn1−1,n2 -1T

~qT−xy  Txy F

~q
F n1,n2

Fig. 4. Depiction of the equilibrium condition in the region between adjacent cells collocated with eqn1 ;n2 :

k3

k1

k1

m2

m2

m2

m3

m3

m3 m1

k7

k6

k5
k4 k2

k2

k9

k8

k3

e1
e2

q1

q5

q6 q7

q4

q3q2

Fig. 5. A hexagonal honeycomb lattice with an internal degree of freedom and forces.

Table 1
Parameters chosen for the hexagonal honeycomb.

m1 m2 m3 k1 k2 k3 k4 k5 k6 k7 k8 k9

1 2 3 10 20 30 40 50 10 20 30 10
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the form

T
T
ð�o2Mþ KÞT

qieq
" #

¼ T
T

F ¼ 0, (22)

which is the desired eigenvalue problem parameterized by o.

5. Analysis of free wave motion in an example

In this example, we consider a hexagonal honeycomb lattice structure (Fig. 5). Each mass has one degree of freedom; it
can vibrate in a direction orthogonal to the plane spanned by e1, e2 and the springs exert forces outward or inward to this
plane. The internal degree of the freedom and the internal forces are modelled by the internal mass m3 and springs k4 to k9.
The arbitrary values for the k’s and m’s are tabulated in Table 1. Eqs. (10)–(12) are applied here in the same manner. For this
case:

qi ¼ ½q1�; eq ¼ q2

q3

" #
; eqx ¼ ½q4�; eqy ¼ ½q5�; eqxy ¼

q6

q7

" #
,

Tx ¼ ½Ie
mx 0�; Ty ¼ ½0 Iemy �; Txy ¼

Iemxþmy 0

0 Iemxþmy

" #
.
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0
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3pi/2
2pi

0
pi/2

pi
3pi/2

2pi
0

5

10

15

ω

μx
μy

Fig. 6. Three o’s versus mx and my in the case of the mass–spring hexagonal lattice.

Table 2

Comparison between the force F6, the external force on the cell collocated with q6, and the force obtained by direct use of Bloch analysis emxþmy F2.

F6 �21 1 �9 17 11 3 10 7 16 14

emxþmy F2 �31 �13 �33 6 �7 �16 �8 �8 �5 2

Difference 10 14 24 11 18 19 18 15 21 12

F. Farzbod, M.J. Leamy / Journal of Sound and Vibration 325 (2009) 545–551 551
As it was proved for the general case, Eq. (19) holds in this case. Utilizing Eq. (22), the dispersion curves for the values of
Table 1 for the hexagonal honeycomb were found (Fig. 6).

Also external forces on the unit cell collocated with q6 was obtained for 10 random values of eq and qi and it is compared
with emxþmy F2 for mx ¼ my ¼ 0:5. These numbers are shown in Table 2. It is apparent from this table that the Bloch analysis
is not valid for the forces in this case.

6. Concluding remarks

Using a preferred ordering of the Bloch transformation matrix, we demonstrate that for any two- or three-dimensional
lattice, the Bloch procedure results in a zero vector for the reduced forces. This establishes the validity of the final
eigenvalue problem authors have posed to calculate dispersion relationships in general, periodic lattices.
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